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Abstract. The spin-Peierls (SP) phase transition of the inorganic compound CuGeO3 is theoretically stud-
ied on the basis of Heisenberg model using Jordan-Wigner transformation (JWT) by mean-field approach.
The magnetic interaction is considered to be the quasi-one-dimensional Cu2+ (spin-1/2) Heisenberg chain,
and the spin-lattice distortion is expressed quasiclassically. We found that the interchain coupling J⊥ be-
tween the chains leads to the occurrence of gapless dimerization (or stepped SP) phase. As the interchain
coupling decreases, the difference between the dimerization temperature tD and the gap-opening temper-
ature tG decreases. If the interchain coupling is small enough, then the difference should be too small to
be observed experimentally.

PACS. 75.10.Jm Quantized spin models – 75.30.Gw Magnetic anisotropy – 75.50.Ee Antiferromagnetics

1 Introduction

The discovery of the so-called spin-Peierls (SP) transition
in a linear Cu2+ (S = 1/2) chain inorganic compound
CuGeO3 [1] has attracted much attention both experi-
mentally and theoretically [2–5]. The spin-Peierls transi-
tion can be interpreted as the formation of spin singlet
due to the dimerization of localized d electrons of Cu2+.
The main feature of the state is the appearance of an
energy gap between a nonmagnetic singlet ground state
(GS) and a magnetic excited triplet state. Pouget et al. [6]
observed an anomalous behavior of superstructure reflec-
tions indexed in a 2a×b×2c lattice below the spin-Peierls
transition temperature Tsp (14 K), and concluded that
CuGeO3 undergoes a second-order structural phase tran-
sition concomitantly to the disappearance of the magnetic
susceptibility. Furthermore, a sharp change of specific heat
[7,8] at Tsp confirms the appearance of a spin gap. The
investigation of nonmagnetic impurity Zn-doping on the
spectrum and dynamical spin structure factor of CuGeO3

shows that the spin gap is rapidly suppressed by doping
and the new phase is a three-dimensional (3D) Néel state
[9,10].

Theoretical investigations of the SP transition have
been performed on the basis of Heisenberg and quan-
tum XY -models. A fermion representation via the Jordan-
Wigner transformation (JWT) is used to describe the
spin-1/2 chain, and the spin-phonon interactions are
considered as the random-phase approximation [10–13].
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Those theories only consider the intrachain magnetic cou-
pling and neglect the interchain coupling which can lead
the dimerization and the opening gap at the same tem-
perature. However, Nishi et al. [14] reported the ratio of
the interchain coupling J⊥ to the intrachain coupling J
is about 0.1. Therefore, the interchain coupling should
be considered in theoretical calculations. In this paper,
by considering the contribution of interchain coupling we
propose a method to investigate the SP transition based
on a quasi-one-dimensional Heisenberg model using JWT
in the framework of the mean-field approach. We present
two self-consistent equations for describing the variations
of dimerization and interaction order parameters. It was
found theoretically that the gapless spin-Peierls transition
temperature is higher than that of the opening of the spin
gap.

2 Model

One can consider a two-dimensional (2D) anisotropic
Heisenberg model on a square lattice. The spin Hamil-
tonian is expressed as:

H = J
∑
i,j

Si,jSi+x̂,j + J⊥
∑
i,j

Si,jSi,j+ŷ

= J
∑
i,j

{Sxi,jS
x
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y
i+x̂,j + Szi,jS

z
i+x̂,j}

+ J⊥
∑
i,j

{Sxi,jS
x
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y
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z
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z
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{
1

2
(S+
i,jS

−
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+
i,j+ŷ) + Szi,jS

z
i,j+ŷ}, (1)

where Si,j is the spin-1/2 operator at Si,j = ix̂+jŷ, x̂ and
ŷ are the unit vectors along the x-axis and y-axis, J is the
intrachain exchange integral along the x-axis, and J⊥ is
the interchain exchange integral along the y-axis. There is
no exact method for mapping the 2D spin-1/2 operators
onto the fermion representation via the conventional JWT
because the fermion operators defined on different chains
are in general commuting instead of anticommuting. How-
ever, one can promote the conventional JWT to the 2D
case by using some approximative schemes [15,16]. Here
we use the transformation adopted by Azzouz [15], which
is defined on a square lattice as

S−i,j = ci,j exp{iφi,j}, (2)

S+
i,j = exp{iφi,j} c

+
i,j, (3)

φi,j = π

i−1∑
d=0

∞∑
f=0

n̂d,f +

j−1∑
f=0

n̂i,f

 , (4)

where ci,j is a spinless fermion annihilation operator at
r̂i,j = ix̂+ jŷ, and n̂i,j = c+ijci,j is the number operator at
r̂i,j . Thus, the on-site exclusion principle of spin and the
commutation relations are preserved. After substituting
the extended JWT into the Hamiltonian (1), we have

H =

J
∑
i,j

{
1

2
(eiϕi,i+x̂,jc+i,jci+x̂,j + h.c.) + c+i,jc

+
i+x̂,jci+x̂,jci,j}

+ J⊥
∑
i,j

{
1

2
(c+i,jci,j+ŷ + h.c.) + c+i,jc

+
i,j+ŷci,j+ŷci,j}, (5)

where eiϕi,j+x̂;j = ei[(φi+x̂,j−φi,j)−πn̂i,j ] is a c-number. In
equation (5), only the effective hopping between the near-
est sites is taken into account for spinless fermion, in
which J is in the x-direction (parallel to the chain), and
J⊥ is in the y-direction (perpendicular to the chain).
The phase factor eiϕi,i+x̂,j is determined by various spin
configurations. Thus, similar to the in-phase flux state
[17], each thick line corresponds to a phase factor of
1, and each thin line corresponds to a phase factor of
e±iπ, as shown in Figure 1. This arrangement is such
that each of the elementary plaquettes encloses a net
flux of half-quanta. It is known that the spin dimer-
ization is one of the most prominent features of the
spin-Peierls state. According to the study of elastic neu-
tron scattering for CuGeO3 [18], we choose that in
Figure 1 each thick and thin line along the x-axis corre-
sponds to the stronger coupling J+ = J0(1 + 2δu) and
weaker coupling J− = J0(1 − 2δu) respectively, while
each thin line along the y-axis represents the weak cou-
pling J⊥ = αJ0. Here J0 is the exchange integral along
the x-axis before dimerization and δ = −dJxi,j/du. The

Fig. 1. Dimerization scheme on a square lattice, each thick and
thin line along x-axis represents stronger coupling and weaker
coupling respectively, the dotted line represents the interchain
coupling; the phase distribution: each thick line corresponds to
a phase factor of 1 and thin line corresponds to a phase factor
of e±iπ = −1.

spin-lattice distortion u is treated quasiclassically as Su,
Schrieffer and Heeger (SSH) [19] did for linear conducting
chains. Following these descriptions, the dimerized Hamil-
tonian can be written in terms of spinless fermion opera-
tors a and b corresponding to the two sublattices A and
B respectively, as follows:

H =
∑
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+
1

2

∑
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K[(ui,j − ui−x̂,j)
2 + (ui+x̂,j − ui,j)

2], (6)

where ui,j = (−1)i+ju is the spin-lattice distortion, and
K is the elastic constant. The neutron scattering study
[20] revealed that the distance of the dimerized Cu–Cu
pairs is about 2.930 Å, and the interval of the two dimers
is 2.955 Å. Although u is quite small as compared with
the lattice spacing a, the quantity of 2J0δu is not very
small as compared with J0, which should not be negli-
gible. Therefore, the Hamiltonian (6) can be expressed in
momentum space as

H =2J0

∑
k

(γka
+
k bk + h.c.)

+
2J0

N

∑
k,p,q

ξqa
+
k b

+
p bp+qak−q + 2NKu2, (7)

where

γk =
1

2
[2δu cos(kxa) + α cos(kya) + i sin(kxa)], (8)

ξk =
1

2
[cos(kxa) + α cos(kya) + i2δu cos(kxa)]. (9)

In equation (7), the four-fermion operator term can be de-
coupled in a Hartree-Fock approximation by introducing
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Eαk = −
√
J2

0 c
2 sin2(kxa)+J2

0 [(2δu+P ) cos(kxa)+α(1+P ) cos(kya)]2, (11)

Eβk =
√
J2

0 c
2 sin2(kxa)+J2

0 [(2δu+P ) cos(kxa)+α(1+P ) cos(kya)]2, (12)

an alternating order parameter P = 〈a+
0 b0〉/N determined

numerically by self-consistent equations later. Thus, the
Hamiltonian can be diagonalized as

H =
∑
k

(Eαk α
+
k αk +Eβkβ

+
k βk) +N(1 + α)P 2 + 2NKu2,

(10)

where

see equations (11, 12) above

here c = (1 + 2δuP ). It is convenient for the following
calculations to set some parameters: J0 = 1, a = 1, the
reduced temperature t = kBT/J0, the dimerization pa-

rameter η =
∣∣∣J−−J+

J++J−

∣∣∣, and the reduced elastic constant

K ′ = K(J0/δ)
2. Thus the reduced energy spectra can be

written as:

εαk = −
√

(1+ηP )2 sin2 kx+[(η + P ) cos kx+α(1+P ) cos ky]2,

(13)

εβk =
√

(1+ηP )2 sin2 kx+[(η + P ) cos kx+α(1+P ) cos ky]2.

(14)

From the spectra formula, the energy gap can be ob-
tained as:

∆ = 2[η + P − α(1 + P )]. (15)

The reduced free energy per unit cell can be obtained from
the diagonalized Hamiltonian (10), namely,

f = −
2

J0N
kBT lnZ = −

2t

N
ln(Tre−H/kBT )

= −
2t

N

∑
BZ′

[ln(2 cosh
Eαk
2t

) + ln(2 cosh
Eβk
2t

)]

+ 2(1 + α)P 2 +K ′η2

= −t

∫∫
BZ′

dkxdky

2π2
[ln(2 cosh

Eβk
2t

) + ln(2 cosh
Eβk
2t

)]

+ 2(1 + α)P 2 +K ′η2. (16)

Then, the dimerization and the alternating order param-
eters η(t) and P (t) can be determined in self-consistent
way from the conditions: ∂f/∂η = 0 and ∂f/∂P = 0, as
follows:

K ′ =

∫∫
BZ′

dkxdky

8π2

PA sin kx +B cos kx

η
√
A2 +B2

× [tanh
εβk
2t
− tanh

εαk
2t

], (17)

P =

∫∫
BZ′

dkxdky

8π2

ηA sin kx +B(cos kx + α cos ky)

2(1 + α)
√
A2 +B2

× [tanh
εβk
2t
− tanh

εαk
2t

], (18)

Fig. 2. Temperature dependencies of the dimerization order
parameter η(t), the alternating order parameter P (t) and the
energy gap ∆(t) for α = 0.1 and K′ = 0.708.

where

A = (1 + ηP ) sin kx,

B = (η + P ) cos kx + α(1 + P ) cos ky.

The numerical results for the dimerization order parame-
ter η(t), the alternating order parameter P (t) and the en-
ergy gap ∆(t) versus temperature are shown in Figure 2
by setting α = 0.1. One can see that the dimerization
and the opening of the gap happen at different temper-
atures, indicated by tD (for η = 0) and tG (for ∆ = 0),
respectively. Figure 3 shows the variation of the energy
spectrum from equation (14). It was found that for appro-
priately small order parameters (η ≤ 0.081, P ≤ 0.0203)
the gapless state exists, and the dispersion relation along
O → Y and X → O coincides with the experimental re-
sults for CuGeO3 (see Ref. [17]). Such a dispersion reveals
the existence of relatively strong antiferromagnetic cou-
pling along the b axis [20].

From equations (17, 18), we can get the dimerization
temperature tD and the gap-opening temperature tG nu-
merically by setting η → 0 when t→ tD and ∆ = 0 when
t→ tG, respectively. The variations of tD and tG with the
coupling ratio α are displayed in Figure 4. It is obvious
that the dimerization and the alternating order parame-
ters are decreasing functions of temperature. Since tD is
always larger than tG, the intermediate temperature state
appears, which is called a gapless dimerized state. One
can see that the temperature interval between tD and tG
increases when α increases, and of course its size depends
on the strength of the exchange coupling J0. Owing to
the small value of α in crystalline CuGeO3, the gapless
SP transition range is very narrow. From the references
[6,21], let the parameters for CuGeO3 be α = 0.1, J0 =
88 K, and Tsp = 14 K, the difference between tD and tG
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Fig. 3. Energy spectrum εβk in equation (14) in the directions:
O → Y , Y → X, and X → O for α = 0.1, (a) η = 0.226,
P = 0.0565, (b) η = 0.081, P = 0.0202, and (c) η = 0.0314,
P = 0.0078 respectively.
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Fig. 4. Dimerization temperature tD and the gap-opening
temperature tD versus α for K′ = 0.708.

is then approximately 0.6 K which is too small to be ob-
served. This may be a reason why it is difficult to observe
experimentally. We suggest that the gapless SP transition
phase can be checked by further experiment with large J0

and α materials.

3 Summary

In conclusion, we have studied the spin-Peierls transition
in CuGeO3 based on a quasi-one-dimensional spin-1/2
Heisenberg model by using an extended JWT. The SP
phase transition is a two stepped progress: the tempera-
ture tD represents the starting of the gapless dimerized
phase, then the energy gap is continuously closed until
temperature decreases to tG at which the opening-gap
dimerization happens. It gives strong evidence that the

stepped SP phase depends very crucially on the interchain
coupling α. The very small difference between tD and tG
has not been observed by experiments in the past. It is
regarded that in a large inter- and intra-chain coupling
magnetic system, the difference may be measured by us-
ing X-ray diffraction, nuclear magnetic resonance (NMR),
inelastic neutron scattering experiments or other advanced
techniques.

We would like to thank Dr. J.X. Li and Prof. X.G. Li for helpful
discussion.
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Phys. Rev. Lett. 72, 4037 (1994).

7. O. Kamimura, M. Terauchi, M. Tanaka, O. Fujita, J.
Akimitsu, J. Phys. Soc. Jpn 63, 2467 (1994).

8. S. Sahling, J.C. Lasjaunias, P. Monceau, A. Revcolevschi,
Solid State Commun. 92, 423 (1994).

9. M. Hase, I. Terasaki, Y. Sasago, K. Uchinokura, H. Obara,
Phys. Rev. Lett. 71, 4059 (1993).

10. G.B. Martins, E. Dagotto, A.J. Riera, Phys. Rev. B 54,
16032 (1996).

11. M.C. Cross, D.S. Fisher, Phys. Rev. B 19, 402 (1979).
12. T.D. Schultz, D.C. Mattis, E.H. Lieb, Rev. Mod. Phys. 36,

856 (1964).
13. Z.Y. Lu, Z.B. Su, L. Yu, Phys. Rev. Lett. 72, 1276 (1994).
14. M. Nishi, O. Fujita, J. Akimistu, Phys. Rev. B 50, 6085

(1994).
15. M. Azzouz, Phys. Rev. B 48, 6136 (1993).
16. Y.J. Ji, J. Qi, J.X. Li, C.D. Gong, J. Phys.-Cond. 9, 2259

(1997).
17. Y.R. Wang, Phys. Rev. B 43, 3786 (1991); ibid. 46, 151

(1992).
18. K. Irota et al., Phys. Rev. Lett. 73, 736 (1994).
19. W.P. Su, J. Schrieffer, A. Heeger, Phys. Rev. Lett. 42,

1698 (1979); Phys. Rev. B 22, 2099 (1980).
20. L.P. Regnault, M. Ain, B. Hennion, G. Dhalenne, A.

Revcdevschi, Phys. Rev. B 53, 5579 (1996).
21. L.P. Regnault, M. Ain, B. Hennion, G. Dhalenne, A.

Revcolevschi, Physica B 213-214, 1 (1995); ibid. 213-214,
278 (1995).


